Overlapping Qubits
نویسندگان
چکیده
An ideal system of n qubits has 2 dimensions. This exponential grants power, but also hinders characterizing the system’s state and dynamics. We study a new problem: the qubits in a physical system might not be independent. They can “overlap,” in the sense that an operation on one qubit slightly affects the others. We show that allowing for slight overlaps, n qubits can fit in just polynomially many dimensions. (Defined in a natural way, all pairwise overlaps can be ≤ in n ) dimensions.) Thus, even before considering issues like noise, a real system of n qubits might inherently lack any potential for exponential power. On the other hand, we also provide an efficient test to certify exponential dimensionality. Unfortunately, the test is sensitive to noise. It is important to devise more robust tests on the arrangements of qubits in quantum devices.
منابع مشابه
حفظ و مقایسه درهمتنیدگی، ناسازگاری و همدوسی کوانتومی بین کیوبیتهای متحرک در کاواکهای نشت کننده
In this study, we consider a composed system consisting of two identical non-interacting subsystems. Each sub-system is made of a moving qubit into a leaky cavity. The study of the dynamic of the composed system revealed that compared with the stationary qubits, entanglement, quantum discord and coherence between two moving qubits remained close to their initial values as time went by. In parti...
متن کاملCoherent manipulation of coupled Josephson charge qubits
We have analyzed and measured the quantum coherent dynamics of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Two qubits are coupled electrostatically by a small island overlapping both Cooper pair boxes. Quantum state manipulation of the qubit circuit is done by applying n...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملProducing cluster states in charge qubits and flux qubits.
We propose a method to efficiently generate cluster states in charge qubits, both semiconducting and superconducting, as well as flux qubits. We show that highly entangled cluster states can be realized by a "one-touch" entanglement operation by tuning gate bias voltages for charge qubits. We also investigate the robustness of these cluster states for nonuniform qubits, which are unavoidable in...
متن کاملqHiPSTER: The Quantum High Performance Software Testing Environment
We present qHiPSTER, the Quantum High Performance Software Testing Environment. qHiPSTER is a distributed high-performance implementation of a quantum simulator on a classical computer, that can simulate general singlequbit gates and two-qubit controlled gates. We perform a number of singleand multi-node optimizations, including vectorization, multi-threading, cache blocking, as well as overlap...
متن کامل